ARCH 5605
COMPUTATIONAL PRACTICE
FALL 2015

INSTRUCTOR
Jeremy Roh
UNC Charlotte, School of Architecture

EMAIL
jlroh@uncc.edu
j.roh@fwagroup.com
jroh_digidesign@att.net

COURSE WEBSITE & FORUM
www.jrohdesign.com/revit
www.jrohdesign.com/revit/authorized_users/forum

INTRODUCTION
This course is the capstone for digital media and computational studies in the School of Architecture. The goal of this seminar course is to provide students with experience using advanced digital tools and methods, including digital fabrication, parametric design, Building Information Modeling/Management (BIM), scripting, and performance analysis in preparation for professional practice and/or advanced graduate research.

OBJECTIVES
• To acquire the skills and methods in digital, parametric, and computational design through architectural case studies and using Revit and Graphical Scripting Interfaces such as Dynamo.
• To develop problem-solving skills with these methods and investigate new applications for them in practice.
• To explore the uses of digital fabrication to create unconventional form and reduce material waste.
• To cultivate a critical mindset regarding the strengths and limitations of logical and procedural systems within the design process.
• To create more informed designs through the integration of ecological data, performance criteria, and parametric/computational connections to contextual factors.
• To be exposed to additional software applications and methods within the computational Architectural Practice.
• To understand reading and creating documented architectural drawings through reverse-engineering, fabrication, and construction.

NAAB Criteria: In consideration of the requirements of the National Architectural Accreditation Board (NAAB), the following performance criteria shall be addressed in this course: A.1 Communication Skills, A.2 Design Thinking Skills, A.3 Visual Communication Skills, A.4 Technical Documentation, A.5 Investigative Skills, A.8 Ordering System Skills, and A.11 Applied Research.

INSTRUCTIONAL METHOD
This course is seminar-based. Students will be given lectures and live demonstrations, perform short-term design assignments, and make preliminary and formal project presentations. Weekly areas of instruction shall include a lecture based class and lab based tutorials.

RECOMMENDED TEXTBOOK

SOFTWARE
Rhinoceros 5.0, Grasshopper Build 0.90076, Revit 2015, and Dynamo 7.5.

EVALUATION
Success in this class is dependent on the level of one's engagement of the issues that outline the projects and the degree to which one assumes responsibility for the work throughout the entire process. Other factors relating to success are: the level of intensity, enthusiasm and focus exhibited in the work, the quality of representations (graphic, three-dimensional, oral or written, the timely resolution and completion of the work.